
ROLE OF LIPID SUPPLEMENTATION ON NEONATAL GROWTH IN PIGS

comparable between the two groups. These data suggest that although expression of fatty acid metabolic enzymes coincides with steatosis as early as 7 days the magnitude of these changes are greater after prolonged exposure to dietary MCFA.

INTRODUCTION

- administered • Infant when formulas are breastfeeding is not possible
- Lipids are used in infant formulas as a dense energy source
- Lipids account for 45-55 % energy in those formulas
- Medium-chain fatty aids (MCFA) are frequently

MCFA

2.7

9.1

0.08

109

21

4.0

3.2

0.36

17

193

17

mg/g As % of Total

1.2

4.2

0.04

50

23

10

1.9

8.1

1.5

0.16

89

Fatty Acids

C8:0

C10:0

C12:0

C13:0

C14:0

C16:0

C16:1

C17:0

C17:1

C18:0

C18:1, n-9

C18:3, n3

C20:4, n6

Total Saturated

C20:0

C20:1

MUFA

PUFA

n-6/n-3

C18:2, n-6 cis

LCFA

mg/g

0.47

1.2

3.3

1.6

0.36

0.99

23

55

10

0.87

0.01

0.46

58

58

11

12

30

As % of Total

0.37

0.91

2.6

1.3

0.28

0.78

18

43

8.2

0.68

0.01

0.36

46

45

12

24

	Fatty acids	LCFA			MCFA				P - value		
		7 days	14 days	21 days	7 days	14 days	21 days	SEM	Diet	Time	Diet x Tim
	C8:0	0.19		0.19	0.24	0.24	0.15	0.048	0.9	0.4	0.4
	C10:0	0.60	0.57	0.65	0.80	0.85	0.57	0.165	0.4	0.9	0.6
	C12:0	9.1	5.5	5.0	20	24	16	3.75	< 0.001	0.5	0.5
	C14:0	13	7.3	7.9	24	30	26	4.84	< 0.001	0.9	0.5
	C14:1n-5	0.20	0.33	0.24	0.24	0.23	0.28	0.047	0.9	0.4	0.3
	C15:0	0.34	1.0	0.55	0.04	0.13	0.07	0.187	< 0.01	0.1	0.3
	C16:0	23	23	21	23	22	27	1.12	0.2	0.4	< 0.01
	C16:1n-7	1.2	0.64	0.65	1.4	1.8	2.0	0.330	< 0.01	0.9	0.2
M C F A	C17:0	0.50	0.88	0.35	0.04	0.10	0.07	0.187	< 0.01	0.3	0.4
	C18:0	14	15	17	8.7	5.9	8.1	2.32	< 0.001	0.6	0.6
a	C18:1n-9	14	18	15	11	9.0	12	1.40	< 0.0001	0.8	0.1
$\frac{a}{\top}$ $$	C18:2n-6	8	10	10	3.8	1.9	2.5	1.77	< 0.0001	1.0	0.5
b	C18:3n-6	5.1	5.2	6.8	2.5	1.3	1.7	1.16	< 0.001	0.7	0.6
	C18:3n-3	0.24	0.57	0.60	0.11	0.08	0.05	0.152	< 0.01	0.6	0.4
	C20:1n-11	0.20	0.32	0.54	0.18	0.17	0.17	0.088	< 0.05	0.2	0.2
	C20:2n-6	0.80	1.03	0.95	0.12	0.10	0.05	0.098	<.0001	0.6	0.5
	C 20:3n-6	0.17	0.05	0.03	0.03	0.06	0.01	0.031	0.1	0.1	0.1
	C 20:3n-3	6.8	8.0	8.6	2.8	1.3	2.0	1.70	< 0.001	0.9	0.7
	C 20:4n-6	2.9	2.9	4.4	1.2	0.48	0.90	0.807	< 0.01	0.5	0.6
	C22:0	0.25	0.77	0.10	0.09	0.05	0.03	0.101	< 0.01	< 0.01	< 0.01
	C22:6n-3	0.18	0.40	0.39	0.16	0.09	0.03	0.093	< 0.01	0.7	0.2

CONCLUSIONS

OIL RED-O-STAINED LIVER SECTION

CRUDE FAT

200

<u>=</u> 150

وم ۲۰۵ کے

0

0

Days on form ula

MCFA

21

14

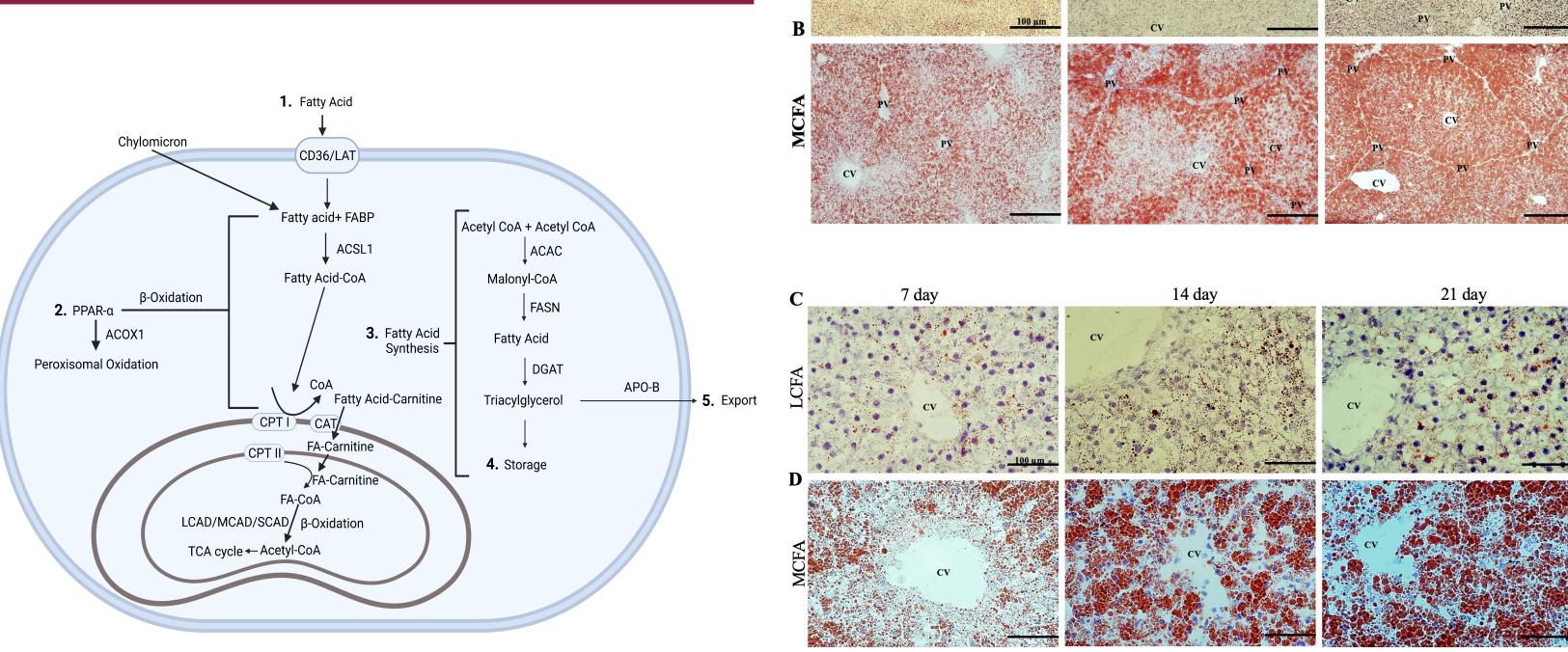
Days on formula

 $D i e t \times T i m e, P < 0.005$

× 20

- 7 day 14 day 21 day
- Fractional body weight of pigs fed MCFA

their high digestibility and used to due bioavailability, and improved weight gains compared with long-chain fatty acids (LCFA)


- The benefits of MCFA are attributed to their faster absorption rates compared with LCFA
- Evidence suggest that MCFA may cause hepatic steatosis, but it is unclear what physiological changes in the liver lead to MCFA accumulation

OBJECTIVES

The objectives of this study were to determine: a. The development and progression of hepatic steatosis in neonatal pigs fed MCFA or LCFA rich formulas

b. The temporal changes in mRNA expression of genes involved in fatty acid metabolism

FATTY ACID METABOLISM

was less than those fed the LCFA formula

- Steatosis occurred even after 7 days of feeding in pigs fed the MCFA formula compared with their LCFA counterparts
- Although we expected to detect whether changes in fatty acid metabolic enzymes precede steatosis, differential mRNA expression of fatty acid metabolic enzymes was evident at 7 days and coincided with steatosis
- Steatosis was exacerbated following longer exposure to MCFA rich formula